Clustering Attributed Multi-graphs with Information Ranking
نویسندگان
چکیده
Attributed multi-graphs are data structures to model realworld networks of objects which have rich properties/attributes and they are connected by multiple types of edges. Clustering attributed multigraphs has several real-world applications, such as recommendation systems and targeted advertisement. In this paper, we propose an efficient method for Clustering Attributed Multi-graphs with Information Ranking, namely CAMIR. We introduce an iterative algorithm that ranks the different vertex attributes and edge-types according to how well they can separate vertices into clusters. The key idea is to consider the ‘agreement’ among the attributeand edge-types, assuming that two vertex properties ‘agree’ if they produced the same clustering result when used individually. Furthermore, according to the calculated ranks we construct a unified similarity measure, by down-weighting noisy vertex attributes or edge-types that may reduce the clustering accuracy. Finally, to generate the final clusters, we follow a spectral clustering approach, suitable for graph partitioning and detecting arbitrary shaped clusters. In our experiments with synthetic and real-world datasets, we show the superiority of CAMIR over several state-of-the-art clustering methods.
منابع مشابه
Selection of Sustainable Supplier for Medical Centers with Data Envelopment Analysis (DEA) & Multi-Attributed Utility Theory (MAUT) Approaches
Background and Objectives: The selection of the sustainable supplier is important for any industry. Medical centers are not an exception in this case, and selecting the best sustainable supplier is a major step towards increasing their productivity. This paper, using the Data Envelopment Analysis and then using Multi-Attributed Utility Theory as a backup approach to fix errors, attempts t...
متن کاملEfficient Algorithms for a Robust Modularity-Driven Clustering of Attributed Graphs
Clustering methods based on modularity are wellestablished and widely used for graph data. However, today’s applications store additional attribute information for each node in the graph. This attribute information may even be contradicting with the graph structure, which raises a major challenge for the simultaneous mining of both information sources. For attributed graphs it is essential to b...
متن کاملSimultaneous Ranking and Clustering of Sentences: A Reinforcement Approach to Multi-Document Summarization
Multi-document summarization aims to produce a concise summary that contains salient information from a set of source documents. In this field, sentence ranking has hitherto been the issue of most concern. Since documents often cover a number of topic themes with each theme represented by a cluster of highly related sentences, sentence clustering was recently explored in the literature in order...
متن کاملClustering and Ranking University Majors using Data Mining and AHP algorithms: The case of Iran
Abstract: Although all university majors are prominent and the necessity of their presences is of no question, they might not have the same priority basis considering different resources and strategies that could be spotted for a country. This paper focuses on clustering and ranking university majors in Iran. To do so, a model is presented to clarify the procedure. Eight different criteria are ...
متن کاملIntegration of Single-view Graphs with Diffusion of Tensor Product Graphs for Multi-view Spectral Clustering
Multi-view clustering takes diversity of multiple views (representations) into consideration. Multiple views may be obtained from various sources or different feature subsets and often provide complementary information to each other. In this paper, we propose a novel graph-based approach to integrate multiple representations to improve clustering performance. While original graphs have been wid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015